Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.376
Filtrar
1.
Plant Signal Behav ; 19(1): 2331357, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38564424

RESUMO

Ornamental crops particularly cut flowers are considered sensitive to heavy metals (HMs) induced oxidative stress condition. Melatonin (MLT) is a versatile phytohormone with the ability to mitigate abiotic stresses induced oxidative stress in plants. Similarly, signaling molecules such as hydrogen sulfide (H2S) have emerged as potential options for resolving HMs related problems in plants. The mechanisms underlying the combined application of MLT and H2S are not yet explored. Therefore, we evaluated the ability of individual and combined applications of MLT (100 µM) and H2S in the form of sodium hydrosulfide (NaHS), a donor of H2S, (1.5 mM) to alleviate cadmium (Cd) stress (50 mg L-1) in stock (Matthiola incana L.) plants by measuring various morpho-physiological and biochemical characteristics. The results depicted that Cd-stress inhibited growth, photosynthesis and induced Cd-associated oxidative stress as depicted by excessive ROS accumulation. Combined application of MLT and H2S efficiently recovered all these attributes. Furthermore, Cd stress-induced oxidative stress markers including electrolyte leakage, malondialdehyde, and hydrogen peroxide are partially reversed in Cd-stressed plants by MLT and H2S application. This might be attributed to MLT or H2S induced antioxidant plant defense activities, which effectively reduce the severity of oxidative stress indicators. Overall, MLT and H2S supplementation, favorably regulated Cd tolerance in stock; yet, the combined use had a greater effect on Cd tolerance than the independent application.


Assuntos
Brassicaceae , Sulfeto de Hidrogênio , Melatonina , Sulfetos , Sulfeto de Hidrogênio/farmacologia , Cádmio/toxicidade , Melatonina/farmacologia , Estresse Oxidativo , Antioxidantes/metabolismo , Brassicaceae/metabolismo , Peróxido de Hidrogênio
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1000-1006, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621907

RESUMO

This study aims to investigate the effect and mechanism of Maxingshigan Decoction on inflammation in the rat model of cough variant asthma(CVA). The SPF-grade SD rats of 6-8 weeks were randomized into normal, model, Montelukast sodium, and low-, medium-, and high-dose Maxing Shigan Decoction groups, with 8 rats in each group. The CVA rat model was induced by ovalbumin(OVA) and aluminum hydroxide sensitization and ovalbumin stimulation. The normal group and model group were administrated with equal volume of normal saline by gavage, and other groups with corresponding drugs by gavage. After the experiment, the number of white blood cells in blood and the levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α) in the serum were measured. The lung tissue was stained with hematoxylin-eosin(HE). Western blot was employed to determine the protein levels of nuclear factor-κB(NF-κB), Toll-like receptor 4(TLR4), myeloid differentiation protein(MyD88), and mitogen-activated protein kinase(MAPK) in the lung tissue. Real-time PCR was carried out to measure the mRNA levels of TLR4 and MyD88 in the lung tissue. Compared with the normal group, the model group showed increased white blood cells, elevated IL-6 and TNF-α levels(P<0.01), lowered IL-10 level(P<0.01), up-regulated protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK(P<0.01) and mRNA levels of TLR4 and MyD88(P<0.01) in the lung tissue. HE staining showed obvious infiltration of inflammatory cells around the airway and cell disarrangement in the model group. Compared with the model group, Montelukast sodium and high-dose Maxing Shigan Decoction reduced the white blood cells, lowered the IL-6 and TNF-α levels(P<0.01), and elevated the IL-10 level(P<0.01). Moreover, they down-regulated the protein levels of TLR4, MyD88, p-p65/NF-κB p65, p-p38 MAPK/p38 MAPK in the lung tissue(P<0.01) and the mRNA levels of TLR4 and MyD88 in the lung tissue(P<0.01). HE staining showed that Montelukast sodium and high-dose Maxing Shigan Decoction reduced inflammatory cell infiltration and cell disarrangement. The number of white blood cells, the levels of IL-10 and TNF-α in the serum, the protein levels of TLR4, MyD88, p-p65/NF-κB p65, and p-p38 MAPK/p38 MAPK, and the mRNA levels of TLR4 and MyD88 in the lung tissue showed no significant differences between the Montelukast sodium group and high-dose Maxing Shigan Decoction group. Maxing Shigan Decoction can inhibit airway inflammation in CVA rats by inhibiting the activation of TLR4/MyD88/NF-κB and p38 MAPK signaling pathways.


Assuntos
Acetatos , 60522 , Ciclopropanos , NF-kappa B , Quinolinas , Sulfetos , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Interleucina-10/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratos Sprague-Dawley , Ovalbumina , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inflamação , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , RNA Mensageiro
3.
Mar Environ Res ; 197: 106481, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593647

RESUMO

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Assuntos
Água do Mar , Compostos de Sulfônio , Animais , Água do Mar/química , Enxofre/metabolismo , Compostos de Sulfônio/química , Compostos de Sulfônio/metabolismo , Sulfetos/metabolismo , Bactérias/metabolismo , Fitoplâncton , China , Zooplâncton/metabolismo
4.
J Nanobiotechnology ; 22(1): 141, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561739

RESUMO

Osteosarcoma (OS) is an aggressive bone tumor with strong invasiveness, rapid metastasis, and dreadful mortality. Chemotherapy is a commonly used approach for OS treatment but is limited by the development of drug resistance and long-term adverse effects. To date, OS still lacks the curative treatment. Herein, we fabricated pyrite-based nanoparticles (FeS2@CP NPs) as synergetic therapeutic platform by integrating photothermal therapy (PTT) and chemo-dynamic therapy (CDT) into one system. The synthetic FeS2@CP NPs showed superior Fenton reaction catalytic activity. FeS2@CP NPs-based CDT efficaciously eradicated the tumor cells by initiating dual-effect of killing of apoptosis and ferroptosis. Furthermore, the generated heat from FeS2@CP under near-infrared region II (NIR-II) laser irradiation could not only inhibit tumor's growth, but also promote tumor cell apoptosis and ferroptosis by accelerating •OH production and GSH depletion. Finally, the photothermal/NIR II-enhanced CDT synergistic therapy showed excellent osteosarcoma treatment effects both in vitro and in vivo with negligible side effects. Overall, this work provided a high-performance and multifunctional Fenton catalyst for osteosarcoma synergistic therapy, which provided a pathway for the clinical application of PTT augmented CDT.


Assuntos
Neoplasias Ósseas , Nanopartículas , Neoplasias , Osteossarcoma , Sulfetos , Humanos , Terapia Fototérmica , Osteossarcoma/tratamento farmacológico , Ferro , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Peróxido de Hidrogênio
5.
Vet Med Sci ; 10(3): e1449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581350

RESUMO

BACKGROUND: When pesticides are introduced into wetlands by agriculture, fish quickly absorb them through their gills. Pesticides reduce hatchability, impede growth, and antioxidant response, killing fish. Therefore, it's crucial to find effective pesticide mitigation methods for fish. OBJECTIVE: In this study, the effects of garlic (Allium sativum) oil on the growth, haematology, biochemistry and histopathology parameters of Nile tilapia (Oreochromis niloticus) exposed to cypermethrin toxicity were investigated. METHODS: In the research, cypermethrin was added to the water of the experimental groups at a rate of 1:20 of the LC50 value, and 1.00% garlic oil was added to the fish feed. Fish with an initial weight of 30.26 ± 0.26 g were fed for 45 days. RESULTS: At the end of feeding, the final weights were determined as 69.39 ± 0.41 (G1), 61.81 ± 0.65 (G2), 82.25 ± 0.36 (G3), and 75.04 ± 0.68 (G4) grams, respectively. Histopathological examinations revealed serious lesions in the gill, liver, brain, and muscle tissues in the cypermethrin group, whereas these lesions were minimal or absent in the garlic oil group. CONCLUSIONS: Garlic oil supplementation had positive effects on growth, haematology, blood biochemistry, hepatosomatic index and histopathological parameters. These findings suggest that garlic oil is a potential protective agent against cypermethrin toxicity.


Assuntos
Compostos Alílicos , Ciclídeos , Alho , Praguicidas , Piretrinas , Sulfetos , Animais , Antioxidantes
6.
Nat Commun ; 15(1): 3269, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627381

RESUMO

Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich's ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin's molecular role in this fundamental process.


Assuntos
60529 , Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Liases de Carbono-Enxofre/metabolismo , Proteínas de Ligação ao Ferro/metabolismo
7.
Sci Total Environ ; 927: 172162, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569954

RESUMO

Acid mine drainage (AMD) induced by pyrite oxidation is a notorious and serious environmental problem, but the management of AMD in an economical and environmentally friendly way remains challenging. Here, lignin, a natural polymer and abundant waste, was employed as both a bactericide and passivator to prevent AMD formation. The addition of lignin to a mimic AMD formation system inoculated with Acidithiobacillus ferrooxidans at a lignin-to-pyrite weight ratio of 2.5: 10 reduced the combined abiotic and biotic oxidation of pyrite by 68.4 % (based on released SO42-). Morphological characterization of Acidithiobacillus ferrooxidans revealed that lignin could act on the cell surface and impair the cell integrity, disrupting its normal growth and preventing biotic oxidation of pyrite accordingly. Moreover, lignin can be used alone as a passivator to form a coating on the pyrite surface, reducing abiotic oxidation by 71.7 % (based on released SO42-). Through multiple technique analysis, it was proposed that the functional groups on lignin may coordinate with iron ions on pyrite, promoting its deposition on the surface. In addition, the inherent antioxidant activity of lignin may also be actively involved in the abatement of pyrite oxidation via the reduction of iron. Overall, this study offered a "treating waste with waste" strategy for preventing AMD formation at the source and opened a new avenue for the management of AMD.


Assuntos
Acidithiobacillus , Lignina , Mineração , Acidithiobacillus/metabolismo , Ferro , Sulfetos , Oxirredução
8.
Chem Commun (Camb) ; 60(34): 4581-4584, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38576349

RESUMO

A study of an integrated OPECT biosensor gate and the EC color-changing region on the same chip was carried out, achieving sensitive detection through bioetching-induced signal changes. Enzymatic bioetching enables specific alkaline phosphatase (ALP) detection by catalyzing the production of CdS, which modulates the channel current and generates a visual signal.


Assuntos
Fosfatase Alcalina , Técnicas Biossensoriais , Técnicas Eletroquímicas , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/análise , Transistores Eletrônicos , Compostos de Cádmio/química , Sulfetos/química , Processos Fotoquímicos
9.
Sci Total Environ ; 927: 172238, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582121

RESUMO

Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 µM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.


Assuntos
Metilação de DNA , Epigênese Genética , Sulfetos , Transcriptoma , Animais , Transcriptoma/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Sulfetos/toxicidade , Epigenoma , Poluentes Químicos da Água/toxicidade , Estresse Fisiológico , Poliquetos/genética , Poliquetos/efeitos dos fármacos , Perfilação da Expressão Gênica
10.
Physiol Plant ; 176(2): e14291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628053

RESUMO

Priming plants with chemical agents has been extensively investigated as a means for improving their tolerance to many biotic and abiotic stresses. Earlier, we showed that priming young avocado (Persea americana Mill cv. 'Hass') trees with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide, improves the response of photosynthesis to simulated frost (cold followed by high light) conditions. In the current study, we performed a transcriptome analysis to gain insight into the molecular response of avocado 'Hass' leaves to frost, with or without NaHS priming. The analysis revealed 2144 (down-regulated) and 2064 (up-regulated) differentially expressed genes (DEGs) common to both non-primed and primed trees. Non-primed trees had 697 (down) and 559 (up) unique DEGs, while primed trees exhibited 1395 (down) and 1385 (up) unique DEGs. We focus on changes in the expression patterns of genes encoding proteins involved in photosynthesis, carbon cycle, protective functions, biosynthesis of isoprenoids and abscisic acid (ABA), as well as ABA-regulated genes. Notably, the differential expression results depict the enhanced response of primed trees to the frost and highlight gene expression changes unique to primed trees. Amongst these are up-regulated genes encoding pathogenesis-related proteins, heat shock proteins, enzymes for ABA metabolism, and ABA-induced transcription factors. Extending the priming experiments to field conditions, which showed a benefit to the physiology of trees following chilling, suggests that it can be a possible means to improve trees' response to cold stress under natural winter conditions.


Assuntos
Sulfeto de Hidrogênio , Persea , Persea/genética , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Perfilação da Expressão Gênica , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas
11.
Aging (Albany NY) ; 16(7): 6521-6536, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613798

RESUMO

Acute lung injury (ALI) is a major cause of acute respiratory failure with a high morbidity and mortality rate, and effective therapeutic strategies for ALI remain limited. Inflammatory response is considered crucial for the pathogenesis of ALI. Garlic, a globally used cooking spice, reportedly exhibits excellent anti-inflammatory bioactivity. However, protective effects of garlic against ALI have never been reported. This study aimed to investigate the protective effects of garlic oil (GO) supplementation on lipopolysaccharide (LPS)-induced ALI models. Hematoxylin and eosin staining, pathology scores, lung myeloperoxidase (MPO) activity measurement, lung wet/dry (W/D) ratio detection, and bronchoalveolar lavage fluid (BALF) analysis were performed to investigate ALI histopathology. Real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to evaluate the expression levels of inflammatory factors, nuclear factor-κB (NF-κB), NLRP3, pyroptosis-related proteins, and H2S-producing enzymes. GO attenuated LPS-induced pulmonary pathological changes, lung W/D ratio, MPO activity, and inflammatory cytokines in the lungs and BALF. Additionally, GO suppressed LPS-induced NF-κB activation, NLRP3 inflammasome expression, and inflammatory-related pyroptosis. Mechanistically, GO promoted increased H2S production in lung tissues by enhancing the conversion of GO-rich polysulfide compounds or by increasing the expression of H2S-producing enzymes in vivo. Inhibition of endogenous or exogenous H2S production reversed the protective effects of GO on ALI and eliminated the inhibitory effects of GO on NF-κB, NLRP3, and pyroptotic signaling pathways. Overall, these findings indicate that GO has a critical anti-inflammatory effect and protects against LPS-induced ALI by suppressing the NF-κB/NLRP3 signaling pathway via H2S generation.


Assuntos
Lesão Pulmonar Aguda , Compostos Alílicos , Sulfeto de Hidrogênio , Lipopolissacarídeos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Transdução de Sinais , Sulfetos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , NF-kappa B/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Compostos Alílicos/farmacologia , Compostos Alílicos/uso terapêutico , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Masculino , Sulfeto de Hidrogênio/metabolismo , Camundongos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Alho/química , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL , Suplementos Nutricionais
12.
Int J Biol Sci ; 20(6): 2168-2186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617532

RESUMO

Cysteinyl leukotriene receptor 1 (CYSLTR1) is observed to increase in psoriatic skin lesions. Montelukast, a CYSLTR1 antagonist, effectively treats inflammatory disorders, such as rheumatoid arthritis, multiple sclerosis, and atopic dermatitis. Thus, blocking CYSLTR1 may be a promising strategy for psoriasis immunotherapy. We prepared a montelukast sodium cream and solution and investigated their effects on psoriasis-like skin lesions induced by imiquimod (IMQ). After the treatment, serum, skin, and spleen samples were collected for evaluation. We treated human T helper (Th) 17 cells with montelukast in vitro to study its effect on Th17 differentiation and nuclear factor kappa-B (NF-κB) signaling. We also created a keratinocyte proliferation model induced by M5 cytokines and assessed the influence of montelukast on key psoriasis-related genes. We induced psoriasis in CYSLTR1 knockout (KO) mice using IMQ to explore the role of CYSLTR1 in psoriasis development. Montelukast sodium cream and solution effectively reduced the psoriasis area and severity index (PASI) and alleviated disease symptoms in IMQ-induced mice. Furthermore, reduced infiltration of inflammatory cells (Th1, Th17, and T follicular helper [Tfh] cells), decreased mRNA expression of cytokines in the skin (interleukin [IL]-17/F and IL-23), and lower serum concentrations of various cytokines (IL-2, IL-6, IL-13, and IL-17A/F) were observed. Montelukast cream and solution also decreased spleen size and the proportion of Th17 and Tfh cells, and significantly inhibited NF-κB signaling-related genes after application. Moreover, montelukast inhibited Th17 cell differentiation and suppressed NF-κB signaling in vitro. CYSLTR1 KO mice induced with IMQ showed improvement in PASI scores, serum IL-17A/F levels, and lower Th1 and Th17 cells in the spleen and skin compared to wild-type mice. Montelukast also suppressed the proliferation and inflammatory response of keratinocytes by regulating NF-κB signaling. Collectively, our results strongly indicate that inhibition of CYSLTR1 signaling to target the Th17 response holds significant promise as a therapeutic approach to manage psoriasis.


Assuntos
Acetatos , Ciclopropanos , NF-kappa B , Psoríase , Quinolinas , Sulfetos , Humanos , Animais , Camundongos , Interleucina-17 , Células Th17 , Psoríase/tratamento farmacológico , Diferenciação Celular , Citocinas
13.
PLoS One ; 19(4): e0301621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630691

RESUMO

Diabetes mellitus adversely affects the contractile ability of the small intestine. However, there is a paucity of studies investigating the impact of garlic oil on small intestinal motility. This study aimed to evaluate the potential beneficial effects of garlic oil on type 2 diabetes mellitus in rats. Thirty-six adult female Wistar rats (n = 36) were divided into four groups: control, non-diabetic rats supplemented with garlic oil, diabetic rats, and diabetic rats treated with garlic oil. The rats were anesthetized using pentobarbitone (40 mg/kg BW); various motility parameters and oxidative markers were determined in small intestinal segments. Measurements were taken for naso-anal length, waist circumference, fasting blood glucose level (FBG), and plasma insulin level. Compared to the control group, the diabetic rats exhibited a reduction in the average force of contraction and motility index in all small intestinal segments. Furthermore, the rats exhibited a reduction in the average duration of muscle contraction only in the jejunum. The rats also exhibited hyperglycemia, insulin resistance, significant oxidative stress, and obesity. This was proven by changes in motility parameters, fasting blood glucose levels, HOMA-IR values, intestinal MDA levels, and waist circumference. The non-diabetic rats supplemented with garlic oil also exhibited a decrease in the average force of contraction and motility index in all small intestinal segments, despite having consistently higher Lee index and waist circumference values. However, the diabetic rats treated with garlic oil demonstrated improved small intestinal motility in nearly all small intestinal segments and a reduction in oxidative stress. In conclusion, rats with diabetes mellitus experienced a decrease in small intestinal motility, which is primarily driven by oxidative stress. Normal rats administered with garlic oil supplements exhibited similar effects. In contrast, garlic oil treatment in diabetic rats led to enhanced small intestinal motility and a notable anti-hyperglycemic effect, which can be attributed to the potent antioxidant properties of garlic oil.


Assuntos
Compostos Alílicos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Alho , Sulfetos , Ratos , Feminino , Animais , Ratos Wistar , Glicemia , Estresse Oxidativo
14.
Ultrason Sonochem ; 105: 106858, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564910

RESUMO

Zinc sulfide/graphitic Carbon Nitride binary nanosheets were synthesized by using a novel sonochemical pathway with high electrocatalytic ability. The as- obtained samples were characterized by various analytical methods such as Transmission Electron Microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) to evaluate the properties of ZnS@CNS synthesized by this new route. Subsequently, the electrical and electrochemical performance of the proposed electrodes were characterized by using EIS and CV to establish an electroactive ability of the nanocomposites. The complete properties like structural and physical of ZnS@CNS were analyzed. As-prepared binary nanocomposite was applied towards the detection of anticancer drug (flutamide) by various electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. The glassy carbon electrode modified with a ZnS@CNS composite demonstrates a remarkable electrocatalytic efficiency for detecting flutamide in a pH 7.0 (PBS). The composite modified electrode shows synergistic effect of ZnS and CNS catalyst. The electrochemical sensing performance of the linear range was improved significantly due to high electroactive sites and rapid electron transport pathways. Crucially, the electrochemical method was successfully demonstrated in biological fluids which reveals its potential real-time applicability in the analysis of drug.


Assuntos
Antineoplásicos , Eletrodos , Grafite , Compostos de Nitrogênio , Sulfetos , Ondas Ultrassônicas , Compostos de Zinco , Compostos de Zinco/química , Sulfetos/química , Antineoplásicos/química , Grafite/química , Flutamida/análise , Flutamida/química , Técnicas Eletroquímicas/métodos , Técnicas de Química Sintética , Eletroquímica , Limite de Detecção , Catálise , Nanocompostos/química , Nanoestruturas/química
15.
J Hazard Mater ; 470: 134193, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569341

RESUMO

Arsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution. At a pyrite to arsenopyrite mass ratio of 1:1, 93.6% of As and 93.0% of Fe were solubilized. The results show that pyrite bio-oxidation can promote arsenopyrite dissolution, enhance S0 bio-oxidation, and inhibit the formation of jarosites, tooeleite, and amorphous ferric arsenate. The dry weight of the pyrite & arsenopyrite residue was reduced by 95.1% after bioleaching, compared to the initial load, while only 5% weight loss was observed when pyrite was absent. A biofilm was formed on the arsenopyrite surface in the presence of pyrite, while a dense passivation layer was observed in the absence of pyrite. As(III) (as As2O3) was a dominant As species in the pyrite & arsenopyrite residue. Novel and detailed findings are presented on arsenopyrite bio-dissolution in the presence of pyrite, and the presented approach could contribute to the development of novel cost-effective extractive bioprocesses. ENVIRONMENTAL IMPLICATION: The oxidation of arsenopyrite presents significant environmental hazards, as it can contribute to acid mine drainage generation and arsenic mobilization from sulfidic mine wastes. Bioleaching is a proven cost-effective and environmentally friendly extractive technology, which has been applied for decades in metal recovery from minerals or tailings. In this work, efficient extraction of arsenic from arsenopyrite bioleaching was presented through coupling the process with bio-oxidation of pyrite, resulting in lowered accumulation of hazardous and metastable Fe(III)/As-bearing secondary phases. The results could help improve current biomining operations and/or contribute to the development of novel cost-effective bioprocesses for metal extraction.


Assuntos
Arsenicais , Compostos de Ferro , Ferro , Minerais , Sulfetos , Sulfetos/química , Ferro/química , Arsenicais/química , Cinética , Minerais/química , Compostos de Ferro/química , Oxirredução , Solubilidade , Arsênio/química , Biofilmes , Acidithiobacillus/metabolismo
16.
J Environ Sci (China) ; 142: 83-91, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527898

RESUMO

Mineral processing wastewater (MPW) with large discharge and high toxicity affects environmental safety, and the realizing zero discharge of MPW is of great significance for reducing environmental pollution, saving water resources, and promoting the sustainable development of the mining industry. In this study, we reported natural marmatite (NM) as a low-cost and efficient photocatalyst for the treatment of MPW to help zero wastewater discharge. The photocatalytic activity of NM was evaluated by the removal of total organic carbon (TOC) from MPW under visible-light illumination, and the optimal degradation conditions were discussed. Results showed that superoxide free radicals (·O2-) were the dominant active species responsible for organic pollutants degradation, and 74.25% TOC removal was obtained after 120 min reaction under the optimum treatment conditions. Meanwhile, the wastewater treated by NM photocatalysis can be reused in the flotation system without adverse impact on the product index. Based on these findings, a model of zero wastewater discharge for flotation with the help of photocatalytic treatment was established, it indicated that the water of the whole system can be balanced without affecting the ore dressing index, which showed that visible light-driven photocatalyst has a promising application prospect in the treatment and recycling of industrial wastewater.


Assuntos
Luz , Sulfetos , Águas Residuárias , Compostos de Zinco , Minerais , Catálise
17.
Drug Dev Res ; 85(2): e22178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528652

RESUMO

The wingless/integrase-1 (WNT) pathway involved in the pathogenesis of inflammatory airway diseases has recently generated considerable research interest. Montelukast, a leukotriene receptor antagonist, provides therapeutic benefits in allergic asthma involving eosinophils. We aimed to investigate the role of the WNT pathway in the therapeutic actions of montelukast (MT) in a mixed type of allergic-acute airway inflammation model induced by ovalbumin (OVA) and lipopolysaccharide (LPS) in mice. Female mice were sensitized with intraperitoneal OVA-Al(OH)3 administration in the initiation phase and intranasal OVA followed by LPS administration in the challenge phase. The mice were divided into eight groups: control, asthmatic, and control/asthmatic treated with XAV939 (inhibitor of the canonical WNT pathway), LGK-974 (inhibitor of the secretion of WNT ligands), or MT at different doses. The inhibition of the WNT pathway prevented tracheal 5-HT and bradykinin hyperreactivity, while only the inhibition of the canonical WNT pathway partially reduced 5-HT and bradykinin contractions compared to the inflammation group. Therefore, MT treatment hindered 5-HT and bradykinin hyperreactivity associated with airway inflammation. Furthermore, MT prevented the increases in the phosphorylated GSK-3ß and WNT5A levels, which had been induced by airway inflammation, in a dose-dependent manner. Conversely, the MT application caused a further increase in the fibronectin levels, while there was no significant alteration in the phosphorylation of the Smad-2 levels in the isolated lungs of the mice. The MT treatment reversed the increase in the mRNA expression levels of interleukin-17A. An increase in eosinophil and neutrophil counts was observed in bronchoalveolar lavage fluid samples obtained from the mice in the inflammation group, which was hampered by the MT treatment. The inhibition of the WNT pathway did not alter inflammatory cytokine expression or cell infiltration. The WNT pathway mediated the therapeutic effects of MT due to the inhibition of GSK-3ß phosphorylation as well as the reduction of WNT5A levels in a murine airway inflammation model.


Assuntos
Acetatos , Asma , Ciclopropanos , Lipopolissacarídeos , Quinolinas , Sulfetos , Camundongos , Feminino , Animais , Ovalbumina , Via de Sinalização Wnt , Glicogênio Sintase Quinase 3 beta/metabolismo , Serotonina/metabolismo , Bradicinina/metabolismo , Asma/tratamento farmacológico , Pulmão/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Citocinas/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(12): e2319473121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478695

RESUMO

Hydrogen sulfide exposure in moderate doses can induce profound but reversible hypometabolism in mammals. At a cellular level, H2S inhibits the electron transport chain (ETC), augments aerobic glycolysis, and glutamine-dependent carbon utilization via reductive carboxylation; however, the durability of these changes is unknown. We report that despite its volatility, H2S preconditioning increases P50(O2), the O2 pressure for half-maximal cellular respiration, and has pleiotropic effects on oxidative metabolism that persist up to 24 to 48 h later. Notably, cyanide, another complex IV inhibitor, does not induce this type of metabolic memory. Sulfide-mediated prolonged fractional inhibition of complex IV by H2S is modulated by sulfide quinone oxidoreductase, which commits sulfide to oxidative catabolism. Since induced hypometabolism can be beneficial in disease settings that involve insufficient or interrupted blood flow, our study has important implications for attenuating reperfusion-induced ischemic injury and/or prolonging the shelf life of biologics like platelets.


Assuntos
Sulfeto de Hidrogênio , Traumatismo por Reperfusão , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Sulfetos , Oxirredução , Mamíferos/metabolismo
20.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542058

RESUMO

Nanoparticles (NPs) represent a potential optoelectronic source capable of significantly boosting hydrogen production; however, their inevitable cytotoxicity may lead to oxidative damage of bacterial cell membranes. In this study, we employed non-photosynthetic Escherichia coli K-12 as a model organism and utilized self-assembled cadmium sulfide (CdS) nanoparticles to construct a low-toxicity and hydrogen-production-enhancing self-photosensitive hybrid system. To mitigate the cytotoxicity of CdS NPs and synthesize biocompatible CdS NPs on the cell surface, we employed engineered E. coli (efeB/OE) for bioremediation, achieving this goal through the overexpression of the peroxidase enzyme (EfeB). A comparative analysis with E. coli-CdS revealed a significant downregulation of genes encoding oxidative stress proteins in efeB/OE-CdS post-irradiation. Atomic force microscopy (AFM) confirmed the stability of bacterial cell membranes. Due to the enhanced stability of the cell membrane, the hydrogen yield of the efeB/OE-CdS system increased by 1.3 times compared to the control, accompanied by a 49.1% reduction in malondialdehyde (MDA) content. This study proposes an effective strategy to alleviate the toxicity of mixed biological nanoparticle systems and efficiently harness optoelectronic electrons, thereby achieving higher hydrogen production in bioremediation.


Assuntos
Compostos de Cádmio , Dermatite Fototóxica , Escherichia coli K12 , Nanopartículas , Humanos , Escherichia coli/genética , Nanopartículas/toxicidade , Sulfetos , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...